
RL4ReAl: Reinforcement Learning for Register Allocation

S. VenkataKeerthy1, Siddharth Jain1, Anilava Kundu1, Rohit Aggarwal1, Albert Cohen2,
Ramakrishna Upadrasta1

IIT Hyderabad1, Google2

LLVM Performance Workshop
25th February 2023

Register allocation

● Registers are scarce!

Unbounded set of variables →Finite set of registers

● One of the classic NP-Hard problems
Reducible to graph coloring

● Solutions
○ Constraint-based: ILP and PBQP formulations
○ Heuristic approaches

● LLVM - 4 register allocators
○ Constraint-based: PBQP
○ Heuristic: Greedy, Basic, Fast

2

LLVM’s Register Allocation Strategies and Heuristics

3

Sp
ill

in
g

Eviction

Coalescing

Splitting

● No single best allocator
Greedy performs better in general

● Greedy Allocator Heuristics - Splitting, Coalescing, Eviction and Spilling
● PBQP Allocator Heuristics - Coalescing and Spilling

y

zx

y

zx

y

zR1

y

zx

y

x
2

zx
1

y

zx x
2

y

x
1 z

y

zM

What makes ML based Register allocation difficult?

● Complex problem with multiple sub-tasks
○ Splitting, Spilling, Coalescing, etc.

● ML schemes should ensure correctness
○ Register type constraints
○ Live range constraints

● Integration of ML solutions with compiler frameworks
○ Python ↔ C++

Proposal - RL4ReAl: Reinforcement Learning for Register Allocation

4

RL4ReAl: Objectives

Objectives: Machine Learning Framework for Register Allocation

● End-to-end application of Reinforcement Learning for register allocation

● Semantically correct code generation
○ Without resorting to a correction phase
○ Correctness constraints imposed on action space

● Multi architecture support

5

Can an ML model match/outperform half-a-century old heuristics?

Constraints in Register Allocation

6

7

Register Allocation: Correctness constraints

Registers are complicated!

1.Register Constraints

2.Type constraints

3.Congruence constraints

4.Interference constraints

● Architectural constraints
○ Eg: IDIV32 → Divides contents of $eax; stores result in $eax and $edx

● Register allocation ⇒ Allocating left out virtual registers

Register Constraints

8

● Different types of registers in a register file
○ General purpose registers
○ Floating point registers
○ Vector registers, …

● Variable type compatibility with the register type

Type constraints

9

● Real-world ISAs have hierarchy of register classes
○ Congruent classes

Congruence constraints

10Figure source: Wikipedia

https://en.wikipedia.org/wiki/X86#/media/File:Table_of_x86_Registers_svg.svg
https://creativecommons.org/licenses/by-sa/3.0/

Register allocation ⇒ Graph coloring problem

Interference constraints

11

x
y

z

y

zx

x = 10
y = 20
print x
z = 20 + y
print y
z = z +10
print z

Interval
Interference

Interference
Graph

Available Registers: R1(Green), R2(Blue)

y

zx

x => R1 y => R2 z => R1

Color x

y

zR1

Color y

zR1

Color z

R2

R1 R1

Colored Inference
Graph

R2

RL4ReAl: Reinforcement Learning for Register
Allocation

Split Info

gRPC
Stub

gRPC
Stub

gRPC

LLVM Environment RL Framework

Update

MLRegAlloc

12

13

Interference graphs

Edges: {phy reg - vir reg, vir reg - vir reg}

Vertices
● MIR instruction representations in the live range of a variable

● Instruction → Rn MIR2Vec embeddings

● Final representation: Rm ⨯ n

MIR2Vec representations

● n dimensional vector representation

● Opcode and operand information form the entities in MIR

○

● MIR has specialized opcodes

● Based on width, source and destination types
○ 200 different MOV instructions
○ MOV32rm, MOVZX64rr16, MOVAPDrr, etc.

● 15.3K opcodes in x86; 5.4K opcodes in AArch64
○ {build dir}/lib/Target/X86/X86GenInstrInfo.inc
○ {build dir}/lib/Target/AArch64/AArch64GenInstrInfo.inc

● Generic opcodes
○ Specialized opcodes are grouped together
○ {MOV32rx, MOVZX64rr16, MOVAPDrr, …} → MOV

Grouping opcodes

14

15

Representing Interference graphs

● GGNNs - Gated Graph Neural Networks
○ Processing graph structured inputs

● Message passing
○ Information propagated multiple times across nodes

● Annotations on nodes → Current state
○ Visited
○ Colored
○ Spilled

● Rm ⨯ n → Rk

x

y

z

1

1 0

0 0
1 0

1

0

● Environment - MLRegAlloc pass in LLVM
○ Generates interference graphs + representations
○ Register allocation, splitting and spilling as per the prediction

● Multi-agent hierarchical reinforcement learning
○ Sub tasks of register allocation → Low level agents

● Agents
○ Node selection
○ Task selection
○ Splitting
○ Coloring

Hierarchical Reinforcement Learning

16

Agents

17

Predicts the split point in live range of a variable

Action space
 Set of valid use points to split

Reward
 Difference in spill weights before and after splitting

Task Selection Agent

Splitting Agent

Selects between split and color

Action space
 Split or Color - Split is allowed only if #Uses > k (k = 2)

Reward: Based on low-level agents

Selects the vertex to process next

Action space
 Vertices that are not colored

Reward: Based on low-level agents

Node Selection Agent

Selected Node

Split Color

OR

Picks an appropriate color for a given vertex

Action space
 Set of Legal registers, if available. Otherwise, spill

Reward
 +Spill weight, if colored; -Spill weight, if spilled

Coloring Agent

 Pick
Next Node

● Involves inserting move instructions

● Dataflow problem
○ Similar to phi or copy placement

● Use dominance frontier

Materialization of splitting

18

● Based on the throughput (Th) of the generated function

● Use LLVM MCA

○ Machine Code Analyzer of LLVM
○ Static model to estimate throughput

Global Rewards

19

● RL4ReAl - to-and-fro communication
○ Decisions/Actions by Python model
○ Materialization of decisions in C++ compiler

● LLVM-gRPC - gRPC based framework

○ Seamless connection between LLVM and Python ML workloads
■ Works as an LLVM library
■ Easy integration

● As simple as implementing a few API calls

○ Support for any ML workload
■ Not just limited to RL
■ With both training and inference flow

Integration with LLVM

20

Training

21

Training phase

○ Involves RL model (Python) requesting C++(LLVM)
○ Model takes decisions on splitting and coloring
○ C++ (LLVM) generates code for the decision and returns the reward accordingly

RL Model
(Python)

1. Request:Interference Graph

LLVM
(C++)

2. Reply:Interference Graph (split)

3. Request: Action +Reward for decision

 4. Reply: Reward as reply

22

Inference

Inference phase
○ For any input code C++(LLVM) sends a request to the trained model

for splitting decision
○ As a reply, the trained model returns the decision it took and code is

generated.

RL Model
(Python)

LLVM
(C++)

1. Interference graph

 2. Reply: Decisions

● MIR2Vec representations
○ 2000 source files from SPEC CPU 2017 and C++ Boost libraries
○ 100 dimensional embeddings; trained over 1000 epochs

● Evaluation
○ x86 - Intel Xeon W2133, 6 cores, 32GB RAM
○ AArch64 - ARM Cortex A72, 2 cores, 4GB RAM

● RL models - PPO policy with standard set of hyperparameters

● Register allocations
○ General purpose, floating point and vector registers

Experiments

23

● RL4ReAl shows speedups over Basic in 14/18 benchmarks
● Runtimes very close to Greedy
● Only 1 show more than 4% slow-down

Runtime improvements on x86

24

Analysis of Hot functions

25

%Difference in runtime with Basic as baseline on hot functions

Analysis of Hot functions

26

%speedups obtained by Greedy and RL4ReAl over Basic

Analysis of Hot functions

27

%speedups obtained by Greedy and RL4ReAl over Basic

Runtimes on AArch64

28

● Regression in performance
○ Identify → Refine heuristics → Evaluate

● MLGO’s policy improvement cycle
○ Fine-tuning of learned RL policy on regression cases

● Identify and Refine
○ Poorly performing benchmarks from each configuration
○ RL4Real-L

■ milc (-13.8s → -0.8s)
○ RL4Real-G

■ Hmmer (-37.6s → -26s), xz (-8.5s → -2.5s)

● Strong case for online learning and domain specialization

Policy Improvement on Regression cases

29Trofin et al, MLGO: a machine learning guided compiler optimizations framework - arXiv, 2021

Summary

● RL4ReAl: Architecture independent Reinforcement Learning for Register Allocation

● Multi agent hierarchical approach

● Generates semantically correct code: constraints imposed on the action space

● Allocations on par or better than the best allocators of LLVM

● New opportunities for compiler/ML research

● Framework will be open-sourced

● https://compilers.cse.iith.ac.in/publications/rl4real

30

https://compilers.cse.iith.ac.in/publications/rl4real/
https://dl.acm.org/doi/abs/10.1145/3578360.3580273

Thank You!
https://compilers.cse.iith.ac.in/publications/rl4real/

31

https://dl.acm.org/doi/abs/10.1145/3578360.3580273

