RL4ReAl: Reinforcement Learning for Register Allocation

S. VenkataKeerthy', Siddharth Jain?, Anilava Kundu', Rohit Aggarwal', Albert Cohen?,
Ramakrishna Upadrasta’

IIT Hyderabad', Google?

G

AR NI e devrare

Indian Institute of Technology Hyderabad

LLVM Performance Workshop
25" February 2023




Register allocation

e Registers are scarce!
Unbounded set of variables —Finite set of registers

e One of the classic NP-Hard problems
Reducible to graph coloring

e Solutions

o Constraint-based: ILP and PBQP formulations
o  Heuristic approaches

e LLVM -4 register allocators

o Constraint-based: PBQP
o Heuristic: Greedy, Basic, Fast



LLVM’s Register Allocation Strategies and Heuristics
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e No single best allocator
Greedy performs better in general

e Greedy Allocator Heuristics - Splitting, Coalescing, Eviction and Spilling
e PBAQP Allocator Heuristics - Coalescing and Spilling




What makes ML based Register allocation difficult?

e Complex problem with multiple sub-tasks
o Splitting, Spilling, Coalescing, etc.

e ML schemes should ensure correctness

o Register type constraints
o Live range constraints

e Integration of ML solutions with compiler frameworks
o  Python & C++

[ Proposal - RL4ReAl: Reinforcement Learning for Register Allocation J




RL4ReAl: Objectives

Objectives: Machine Learning Framework for Register Allocation

e End-to-end application of Reinforcement Learning for register allocation

e Semantically correct code generation
o  Without resorting to a correction phase
o Correctness constraints imposed on action space

e Multi architecture support

[ Can an ML model match/outperform half-a-century old heuristics? }




Constraints in Register Allocation




Register Allocation: Correctness constraints

Registers are complicated!

1.Register Constraints
2.Type constraints
3.Congruence constraints

4 Interference constraints



Register Constraints

e Architectural constraints
o Eg: IDIV32 — Divides contents of Seax; stores result in Seax and Sedx

e Register allocation = Allocating left out virtual registers

; i/_S;urce MOV32ri @, %i:gr32
3 % = 1 MOV32ri 10, %x:gr32

i MOV32ri 20, %y:gr32
4 y = 20 . =
5 et o <call print on %x>

i $eax = COPY %y:gr32

6 2=/
7 S <clear $edx>

_ IDIV32r %x:gr32, implicit-def $eax, implicit-def $edx
8 z =z + 10 =
9 T %z:gr32 = COPY $eax
10 e %i:gr32 = ADD32ri %i:gr32, 1
11 print z i : ;

< L) 0/ oy >

12 oria 2 call print on %y, %z, %i




Type constraints

e Different types of registers in a register file
o General purpose registers
o Floating point registers
o Vector registers, ...

e Variable type compatibility with the register type

1 i=20 MOV32ri 0, #i:igr32

2 x = 10 MOV32ri 10, %x:gr32

3 y = 20 MOV32ri 20, %y:gr32

4 print x <call print on %x>

5 z =y / x $eax = COPY Yy:gr32

6 i++ <clear $edx>

7 z =2z + 10 IDIV32r Yx:gr32, implicit-def
8 i++ $eax, implicit-def $edx
9 print y %z:gr32 = COPY $eax

10 print z %i:gr32 = ADD32ri %i:gr32, 1
11 priat i <call print on Ly, Yz, 41>




Congruence constraints

e Real-world ISAs have hierarchy of register classes
o Congruent classes
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Figure source: Wikipedia
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https://en.wikipedia.org/wiki/X86#/media/File:Table_of_x86_Registers_svg.svg
https://creativecommons.org/licenses/by-sa/3.0/

Interference constraints

Register allocation = Graph coloring problem

orint x Interference Graph

Color x Colory Color z Colored Inference

Graph

Available Registers: R1(Green), R2(Blue)

50 Interval Interference
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RL4ReAl: Reinforcement Learning for Register
Allocation
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Interference graphs

Embeddings

Edges: {phy reg - vir reg, vir req - vir reg} () -

llllllllllll

Vertices o

e MIR instruction representations in the live range of a variable ‘fl[iflf/ 1D
e Instruction — R" MIR2Vec embeddings

e Final representation: R™*" T ﬂ
MIR2Vec representations MIRDFunction Integ;rs:ce

e n dimensional vector representation

Lowering &
Optimization

e Opcode and operand information form the entities in MIR
Source
O W,.[0] + Wa. ([A1] + [A2] + - - + [An]) , W, > W,
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Grouping opcodes

e MIR has specialized opcodes

e Based on width, source and destination types
o 200 different MOV instructions
o MOV32rm, MOVZX64rr16, MOVAPDTr, etc.

e 15.3K opcodes in x86; 5.4K opcodes in AArch64
o {build dir}/lib/Target/X86/X86GenInstrInfo.inc
o {build dir}/lib/Target/AArch64/AArch64GenInstrInfo.inc

e Generic opcodes

o Specialized opcodes are grouped together
o {MOV32rx, MOVZX64rr16, MOVAPDrr, ...} — MOV
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Representing Interference graphs
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Hierarchical Reinforcement Learning

Environment - MLRegAlloc pass in LLVM

o
o Generates interference graphs + representations
o Register allocation, splitting and spilling as per the prediction
e Multi-agent hierarchical reinforcement learning e %
! elector \
o  Sub tasks of register allocation — Low level agents Agent
,/I l Selected \
e Agents i Node
o Node selection / L % e
/ e'e°t0f Next node
o Task selection Agent
o  Splittin Split Col
P . g ; p 56 \ior ‘\
o Coloring
/' splitting Coloring
/ Agent Agent \\
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Agents

Selects the vertex to process next

Node Selection Agent | Action space
Vertices that are not colored

Reward: Based on low-level agents

Selected Node

D S——

Pick
Next Node
Selects between split and color
. Action space
Task Selection Agent Split or Color - Split is allowed only if #Uses > k (k = 2)
Reward: Based on low-level agents
Split Color
Splitting Agent o Ny Coloring Agent
Predicts the split point in live range of a variable Picks an appropriate color for a given vertex
Action space Action space
Set of valid use points to split OR Set of Legal registers, if available. Otherwise, spill
Reward Reward
Difference in spill weights before and after splitting +Spill weight, if colored; -Spill weight, if spilled .




Materialization of splitting

e Involves inserting move instructions

e Dataflow problem
o  Similarto phi or copy placement

e Use dominance frontier

Algorithm 1: move-placement in live range splitting

Parameter: Virtual register o, Split point k
Rename v — 0’

At use point k do: v”" « move(v’)

Basic block B «— block(vg)

for i € DominanceFrontier(B) do
v’ < move(v”’), after last use(v’) in i

Rename 0" — 0", Yuse(v’) between B and i

/4
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Global Rewards

e Based on the throughput (Th) of the generated function

e UselLLVM MCA

o Machine Code Analyzer of LLVM
o  Static model to estimate throughput

Re = +10, Thgrrsrear = ThGreedy
—10, Otherwise
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Integration with LLVM

e RL4ReAl -to-and-fro communication
o Decisions/Actions by Python model
o  Materialization of decisions in C++ compiler

e LLVM-gRPC - gRPC based framework

o Seamless connection between LLVM and Python ML workloads
m Works as an LLVM library

m Easyintegration
e As simple as implementing a few API calls

o Support for any ML workload
m Not just limited to RL
m  With both training and inference flow

20



Training

RL Model
(Python)

~

1. Request:Interference Graph

2. Reply:Interference Graph (split)

3. Request: Action +Reward for decision

/

Training phase

4. Reply: Reward as reply

o Involves RL model (Python) requesting C++(LLVM)
o  Model takes decisions on splitting and coloring
o  C++ (LLVM) generates code for the decision and returns the reward accordingly

LLVM
(C++)
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Inference

/

RL Model
(Python)

-

1. Interference graph

2. Reply: Decisions

Inference phase

o  For any input code C++(LLVM) sends a request to the trained model
for splitting decision
o As areply, the trained model returns the decision it took and code is

generated.

LLVM
(C++)
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Experiments

e MIR2Vec representations
o 2000 source files from SPEC CPU 2017 and C++ Boost libraries
o 100 dimensional embeddings; trained over 1000 epochs

e Evaluation
o x86 - Intel Xeon W2133, 6 cores, 32GB RAM
o AArch64 - ARM Cortex A72, 2 cores, 4GB RAM

e RL models - PPO policy with standard set of hyperparameters

e Register allocations
o  General purpose, floating point and vector registers

Arch. Registers

x86 [A-D]L, [A-D]X, [E,R][A-D]X, [SI,DI]L, [E,R][SLDI],
SI, DI, R[8-15][B,W,D], FP[0-7], [X.Y,Z]MM[0-15]
AArch64 [XW][0-30], [B,H,S,D,Q][0-31]
23




Runtime improvements on x86

Difference from Basic (Basic- x)

Difference from Basic (Basic- x)

Runtime Runtime
Benchmarks BASIC ——— RLAREAL Benchmarks BASIC BEGF  Whmme RL4REAL
L G L G
401.bzip2 360.6 =1.3 7.5 =1.1 10.8 505.mcf _r 344.9 4.5 -1.6 8.6 -4.7
429.mcf 233.8 1.4 -2.9 20l -3.6 520.omnetpp_r 475.7 6.4 6.4 24 2.8
445.gobmk 3223 -3.3 6.4 24 1.7 531.deepsjeng_r 299.9 4.6 16.0 9.9 EEIZES
456. hmmer 284.3 1.8 6.1 5.0 -37.6 541.]eela_r 439.5 1.6 7ol 0.4 129
462 libquantum 2564  -10.1 -1.1 -22 -6.7 557.xz x 3715 -0.6 11.9° B2 -8.5
471.omnetpp 305.7 0.7 0.4 1.2 1.2 508.namd_r 236.5 2.5 235 9.1 2338
433.milc 349.1 -16.6 0.1 -138 -7.0 519.lbm_r 261.8 1.4 Sl 50.9 58.1
470.1bm 184.0 -7.9 3.0 23 1.4 538.imagick_r 479.3 -16.9 1155 118.8 118.4
482.sphinx3 366.0 -37.5 1.6 -3.1 =2.7 544.nab_r 417.5 5.8 132.1 1313 1344

RL4ReAl shows speedups over Basic in 14/18 benchmarks

Runtimes very close to Greedy

Only 1 show more than 4% slow-down
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Analysis of Hot functions

%Difference in runtime with Basic as baseline on hot functions

SPEC CPU 2006 SPEC CPU 2017

GREEDY e GREEDY B

L G L G

Average SIS -2.1 =16 6.2 B/S 438
# (val=0) 16 17 13 23 23 17
#(val<0) 19 18 22 8 8 14
Max P 104 6.2 440 444 413
Min -51.4 -52.5 -13.1 -7.7 -44 -10.8
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Analysis of Hot functions

%speedups obtained by Greedy and RL4ReAl over Basic

B/M Functions Greepy RL4REAL Diff.
Top 5 functions with highest % speedup (over GREEDY)
401 BZ2_compressBlock -51.3 -5.2  46.1
445 do_get read_result -12.0 -0.5 115
482 mgau_eval -6.0 03 63
429 price_out_impl -0.8 23 32
445 subvq_mgau_shortlist -9.8 693 29
538 GetVirtualPixelsFromNexus 8.3 28.8 204
538 SetPixelCacheNexusPixels 4.7 21.9 172
505 cost_compare =Fl 81 158
557 lzma_mf bt4_skip -1.8 363 55
525 Dbiari_decode_symbol =2.7 27 54
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Analysis of Hot functions

%speedups obtained by Greedy and RL4ReAl over Basic

B/M Functions GrReepy RL4REAL Diff.
Top 5 functions with highest % slow-down (over GREEDY)
456 P7Viterbi 2.2 -13.1 -15.3
482 vector_gautbl eval_logs3 11.9 -25 -144
401 mainGtU 0.3 -9.6 -10.0
401 fallbackSort 12.6 6.2 -64
445 fastlib 4.8 <1.1  ~=5.9
557 lzma mf bt4 find 1.5 -10.7 -12.3
531 feval 26.4 17.7 -8.6
505 primal bea mpp 0.9 -76 -85
541 FastBoard::self atari 3.7 -0.1 -5.8
541 gsearch 6.6 1.5 -5.0




Runtimes on AArch64

Runtime Diff. from Basic (Basic- x)

Benchmarks B

PBQP GRreepy RL4REAL

401.bzip2 13669 -41.1 15.6 12.8
429.mcf 1320.5 -12.7 -7.5 1.6
445.gobmk 992.8 15.6 26.1 14.5
462.libquantum 1627.6 -8.7 4.5 9.6
433.milc 1251.1 59.2 70.9 454
444 namd 855.3 2] 21.8 18.8
470.]bm 1604.3 -6.4 -16.6 16
505.mcf _r 1535.1 25.9 1.9 -12.8
508.namd_r 845 0.4 34.5 40.1
523.xalancbmk_r 979.1 8.1 -34 4.4
531.deepsjeng_r 477.2 10.0 30.5 4.5
541.]eela_r 10679 -11.3 -0.1 -19.5
557.xz_r 1163.2 3.7 2202 21.3
519.lbm_r 1657 50.9 -1.6 39.8
538.imagick_r 1244.5 =309 75.8 65.6
544.nab_r 1170.7 =0, 31.5 32.4
Average 5.3 191 18.4
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Policy Improvement on Regression cases

e Regression in performance
o Identify — Refine heuristics — Evaluate

— =

e MLGO's policy improvement cycle
o  Fine-tuning of learned RL policy on regression cases

e Identify and Refine
o  Poorly performing benchmarks from each configuration

o RL4Real-L
m milc (-13.8s — -0.8s)
o RL4Real-G

m  Hmmer (-37.6s — -26s), xz (-8.5s — -2.55s)

e Strong case for online learning and domain specialization

Trofin et al, MLGO: a machine learning guided compiler optimizations framework - arXiv, 2021 29
S



Summary

e RL4ReAl: Architecture independent Reinforcement Learning for Register Allocation

e Multi agent hierarchical approach

e Generates semantically correct code: constraints imposed on the action space

e Allocations on par or better than the best allocators of LLVM
e New opportunities for compiler/ML research

e Framework will be open-sourced
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Abstract problem is reducible to graph coloring, which is one of the

We aim to automate decades of research and experience in
register allocation, leveraging machine learning, We tackle
this problem by embedding a multi-agent rei

learning algorithm within LLVM, training it with the state
of the art techniques. We formalize the

tecture, while ensuring that the generated code preserves

semantic correctness. We also develop a gRPC based frame-

work providing a modular and efficient compiler interface

ints that pre-
cisely define the problem for a given instruction-set archi-

classical NP-Complete problems [8, 22]. Register allocation
as an optimization involves additional sub-tasks, more than
graph coloring itself [8]. Several formulations have been
proposed that return exact, or heuristic-based solutions.
Broadly, solutions are often formulated as constraint-based
optimizations [34, 38], ILP [3, 5, 12, 42], PBQP [31], game-
theoretic approaches [45], and are fed to a variety of solvers.
In general, these approaches are known to have scalability
issues. On the other hand, heuristic-based approaches have

for training and inference. Qur approach is architecture in. been widely used owing to their scalability: reasonable solu-


https://compilers.cse.iith.ac.in/publications/rl4real/
https://dl.acm.org/doi/abs/10.1145/3578360.3580273

Thank You!
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Abstract

We aim to automate decades of research and experience in
register allocation, leveraging machine learning. We tackle
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this problem by ing a g

learning algorithm within LLVM, training it with the state
of the art techni ‘We formalize the ints that pre-
cisely define the problem for a given i i archi-

problem is reducible to graph coloring, which is one of the
classical NP-Complete problems [8, 22]. Register allocation
as an optimization involves additional sub-tasks, more than
graph coloring itself [8]. Several formulations have been
proposed that return exact, or heuristic-based solutions.
Broadly, soluti often int-b
imizati [34, 38], ILP [3, 5, 12, 42], PBQP [31], game-

tecture, while ensuring that the generated code preserves
semantic correctness. We also develop a gRPC based frame-
work providing a modular and efficient compiler interface

theoretic approaches [45], and are fed to a variety of solvers.
In general, these approaches are known to have scalability
issues. On the other hand, heuristic-based approaches have

for traininﬁ and inference. Our aﬁﬁroach is architecture in- __been widely used owing to their scalability: reasonable solu-
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